Cyber@adAPT **MASEZ Commsday Summit** 30 April 2024

Cyber@adAPT

© 2024 Cyber adAPT, Inc. | All rights reserved | Confidential

Status of Cyber Threats & Attacks in Australia (2022 – 2023)

- 94,000 cybercrime reports (up 23%)
 - Report every 6 minutes
- Average cost of cybercrime per report \$46,000 \$71,600
- Australian Competition and Consumer Commission's Targeting Scams report revealed Australians lost over \$3 billion to scams in 2022
 - Up 80% from 2021
- Top 3 cybercrimes:

- identity fraud
- online banking fraud
- online shopping fraud

- email compromise
- business email compromise (BEC) fraud
- online banking fraud

Cybercrime is real, a major threat and must be addressed for both individuals and businesses

Source: Annual Cyber Threat Report 2022–23 developed by the Australian Signals Directorate (ASD)

Typical Elements of Cyber Security

End Point Protection

- Protects a specific end point from certain cyber threats
- Requires client to be installed and maintained
- Cannot be deployed on many types of end points

Firewalls

- Peripheral defense against certain inbound cyber threats
- Often remain in default configuration with non-dynamic features
- Smarter capabilities are cost prohibitive

Network Based Protection

- Analysis of inbound, outbound and internal network traffic for cyber threats
- End point independent
- Deep packet Inspection (DPI) looks at 100% of traffic
- Cost prohibitive for SMB and consumers?

Network Based Cyber Security Typically Uses DPI

- There are many advantages to DPI:
 - Analyzes all traffic regardless of origination/destination
 - Identifies threats that other cyber security elements cannot
 - Provides an extensive view of the health of the network over time
 - Does not require any end point client to be deployed so traffic from all devices is protected
 - Can interwork with other cyber security elements significantly improving cyber security posture
- But:
 - Very resource intensive in high bandwidth networks
 - It is extremely cost prohibitive for SMBs
 - Impossible to deploy economically in consumer environments
- How can network based detection be deployed more ubiquitously to provide better cyber security for all network environments?

A DPI Alternative – Optimized Packet Inspection

• OPI[®] Threat Detection gives us the ability to intelligently determine what traffic to examine based on internal and external factors.

- 100% of traffic is duplicated and processed by a DPI detection engine
- x Gb/s of traffic requires x Gb/s of detection processing

- Only a subset of traffic is duplicated and processed by the OPI[®] detection engine
- x Gb/s of traffic requires << x Gb/s of detection processing

~ 85% - 90% fidelity when using OPI® threat detection vs. full DPI

Resource Optimization with OPI®

OPI® required on average only 8% of the traffic analysis vs. full DPI

© 2024 Cyber adAPT, Inc. | All rights reserved | Confidential

Summary

- OPI[®] allows network based cyber threat detection to be expanded to networks where full DPI is cost prohibitive
- Can be deployed in distributed or centralized fashion
- Capable of supporting SMB, fixed residential broadband and mobile environments
- Can significantly improve the overall cyber security posture in Australia and beyond
- We would enjoy talking more about this exciting technology and its applicability, come visit us at the Maser coffee cart in the hallway outside.

Thank You

© 2024 Cyber adAPT, Inc. | All rights reserved | Confidential

8

Cyber adAPT Core Value Proposition

- Cyber adAPT (CA) residential network threat detection provides network-based cybersecurity protection to both fixed and mobile residential broadband users
- Proprietary, purpose built to address cyber threats targeting residential users
- Capable of being deployed in a variety of configurations including centrally
 - Centralized deployment Ideal for large enterprises and ISP/RSPs and large telco's
- Integrated with various Network Packet Brokers and Engines.
 - Can also be integrated with IPU/GPU based Smart NICs
- Built on 3 Core areas:
- 1. Unique Threat Intelligence
- 2. Proprietary Detection Engine
- 3. Proprietary, patent pending Optimized Packet Inspection (OPI®) Technology

Cyber adAPT Next Generation NTD Enhances Cybersecurity Posture

Untapped Potential: Monetising Connectivity in the Age of Al

Pradap Rajagopal Global Solutions Leader, Ciena

30 April 2024

© Ciena Corporation 2024. All rights reserved. Confidential & Proprietary

Key Global Data Centre regions

TOTAL DATA CENTRE IT LOAD CAPACITIES (MW)*

Australia's DC growth enables new network opportunities

* Operational, under construction, planned and land banked **Average of Frankfurt, London, Amsterdam, Paris, Dublin Source: Cushman Wakefield, Asia Pacific Data Center Advisory: H2 2023, Feb 2024

© Ciena Corporation 2024. All rights reserved. Confidential & Proprietary.

Why do we build networks?

Impact of AI on Network Traffic

Where are networks today?*

Network modernisation required to monetise cloud and AI demand

© Ciena Corporation 2024. All rights reserved. Confidential & Proprietary.

6

*Not scientific **Clena**.

Considerations for network architecture impact of AI

genAl journey through the network and impact Hyperscaler view

Extreme Growth

High Growth

8

genAl journey through the network and impact Service Provider view

Extreme Growth

Call to Action

- Australia in a unique position to capitalise on data centre investment and boom in demand of AI
- Challenge Compute AND <u>network</u> architectures require significant transformation due to evolution of deep learning and inference
- Opportunity for Service Providers to <u>leverage assets:</u>
 - Higher capacity
 - New geographies
 - Flexible inter-site connectivity
- Modern, cloud-first networks required to capitalise on AI growth

Network connectivity is critical in the era of AI powered transformation; monetise your assets!

10

Thank You

© Ciena Corporation 2024. All rights reserved. Confidential & Proprietary.

Breaking the Bandwidth Barrier

How to Get 25%+ More Capacity Out of Your Optical Fibre

Walid Wakim , Chief Technology Officer May 2, 2024

End-User Drivers: A Minute on the Internet in 2023 THIS OR NEXT

INTERNET IN A MINUTE

CLOUD COMPUTING

*Synergy Research Group, Statitica, Gartner Research

Trends in Telecommunications

Increase Capacity, What can we do?

Increase Spectral Efficiency?

• How much more can we truly gain?

Change network architectures?

- Shorten distances?
- Improve fill rates?
- Improve line systems performance?

Wideband DWDM, New Fibres?

- New bands?
- New fibers?
- Extend existing bands?

Increase Spectral Efficiency?

2008, Coherent Introduction drives Spectral Efficiency, capping C-Band growth

> C-band BW didn't change because capacity grew from DSPs

Last 3 Gen of QAM64 spectral efficiency improvements slowed / capped

Approaching Shannon's Limit, Minimal Gain

Change Network Architectures

Advanced Multi Layer Modelling Tools

Wide Band DWDM? New Fibres?

© 2024 Infinera. All rights reserved. Company Confidential

Wavelength (nm)

ARCHITECTURE	SCALE	EVOLVE
Shorten Links	Spectral Efficiency	Hollow Core
Aggregation Efficiency	Expand into Super C+L	Multi-Core
OLS Performance	More Parallelism	Additional Bands

Thank You

© 2023 Infinera. All rights reserved. Company Confidential. Sensitivity: Internal

Empowering Telco Open Innovation

The Red Hat Odyssey

Andrew McGee Senior Director Telco Center of Excellence

COMPANIES USE OPEN SOURCE

Built on - Red Hat

"At first they ignore you. Then they laugh at you. Then they fight you. And then you win."

The Future Is Open Platforms

LINUX VMs CONTAINERS AI MODELS

The Future Is Open Platforms

Red Hat Ansible Automation Platform

The Future Is Open Platforms

2DEGREES ADVA AIRTEL AKAMAI **AMERICA MOVIL** AT&T ΑΧΙΑΤΑ BSC **BT GROUP** CENTURYLINK CHARTER **CHINA TELECOM CHINA MOBILE CK HUTCHISON** COMCAST **DEUTSCHE TELECOM** DIGICEL **ETISALAT**

GLOBE **KDDI** KT LG+ NAVER NTT ONE NZ OPTUS ORANGE PACIFIC CENTURY RAI RAKUTEN **RELIANCE JIO** ROGERS STC SINGTEL **SMARTFREN** SOFTBANK

SPARK **STARHUB** SWISSCOM **TELECOM ITALIA TELEFONICA** TELEKOM MALAYSIA TELENOR TELKOMSEL TELSTRA TPG TRUE TURKCELL VERIZON VIVENDI VNPT VOCUS VODAFONE

THANK YOU

Andrew McGee Senior Director Telco Center of Excellence

